- 著者:田中康友
- 発売日:2019-05-01
- 出版社:NextPublishing Authors Press
内容
- はじめに
- 第1章 集合
- 1.1 集合の概念
- 1.1.1 集合と要素,1.1.2 集合の記法,1.1.3 空集合,1.1.4 集合の相等,1.1.5 部分集合,1.1.6 集合の取扱いに関する注意
- 1.2 集合の演算
- 1.2.1 和集合,1.2.2 共通部分,1.2.3 差集合・補集合,1.2.4 全体集合
- 1.3 集合系
- 1.3.1 集合系,1.3.2 冪集合,1.3.3 部分集合系,1.3.4 集合系の和集合,1.3.5 集合系の共通部分
- 1.4 直積
- 1.4.1 順序対,1.4.2 集合の直積
- 1.1 集合の概念
- 第2章 写像
- 2.1 対応
- 2.1.1 対応,2.1.2 対応の相等,2.1.3 対応のグラフ,2.1.4 逆対応
- 2.2 写像
- 2.2.1 写像,2.2.2 写像の相等,2.2.3 写像のグラフ,2.2.4 写像による像および逆像,2.2.5 全射・単射・全単射,2.2.6 逆写像,2.2.7 写像の合成,2.2.8 写像の縮小・拡大,2.2.9 写像の終集合を重視しない立場,2.2.10 写像の集合
- 2.3 同値関係
- 2.3.1 2項関係,2.3.2 同値関係,2.3.3 直和分割,2.3.4 同値類・商集合,2.3.5 写像の分解
- 2.1 対応
- 第3章 集合族
- 3.1 数列
- 3.1.1 有限列,3.1.2 無限列,3.1.3 列,3.1.4 数列,3.1.5 族
- 3.2 集合族
- 3.2.1 集合族,3.2.2 集合族の和集合,3.2.3 集合族の共通部分,3.2.4 集合族に関する定理,3.2.5 集合族の直積
- 3.3 選択公理
- 3.3.1 選択公理,3.3.2 選択公理の応用
- 3.1 数列
- 第4章 濃度
- 4.1 集合の対等
- 4.1.1 集合の対等,4.1.2 有限集合・無限集合,4.1.3 ベルンシュタインの定理
- 4.2 集合の濃度
- 4.2.1 集合の濃度,4.2.2 有限集合の濃度,4.2.3 濃度に関する用語・記号,4.2.4 集合の濃度の大小,4.2.5 濃度の大小
- 4.3 可算集合・非可算集合
- 4.3.1 可算集合,4.3.2 可算集合の性質,4.3.3 連続の濃度・非可算集合,4.3.4 冪集合の濃度
- 4.4 濃度の演算
- 4.4.1 濃度の和,4.4.2 濃度の積,4.4.3 濃度の和・積の関係,4.4.4 濃度の冪,4.4.5 可算濃度と連続濃度の演算
- 4.1 集合の対等
- 第5章 順序集合
- 5.1 順序集合
- 5.1.1 順序関係,5.1.2 順序集合,5.1.3 最大要素・最小要素
- 5.1.4 極大要素・極小要素,5.1.5 上限,5.1.6 下限
- 5.2 順序同型
- 5.2.1 順序同型写像,5.2.2 順序同型
- 5.3 整列集合
- 5.3.1 整列集合,5.3.2 切片,5.3.3 超限帰納法,5.3.4 整列集合の順序同型
- 5.3.5 整列集合の比較定理,5.3.6 整列集合に関する命題
- 5.1 順序集合
- 第6章 ツォルンの補題
- 6.1 ツォルンの補題
- 6.1.1 ツォルンの補題,6.1.2 ツォルンの補題の変形,6.1.3 ツォルンの補題の応用
- 6.2 整列定理
- 6.2.1 整列定理,6.2.2 整列定理の応用
- 6.1 ツォルンの補題
- 第7章 順序数
- 7.1 順序数
- 7.1.1 順序型,7.1.2 順序数,7.1.3 順序数の大小
- 7.2 順序数の演算
- 7.2.1 順序数の和,7.2.2 順序数の積
- 7.3 順序数と濃度
- 7.3.1 順序数の濃度,7.3.2 濃度に属する順序数
- 7.1 順序数
- 参考文献
- 索引
- 改訂履歴
特徴
- 第10版
- 素朴集合論です.
- 全書的な形式で記述
- A5版
- 249頁
- 表紙のみカラー(2ページ目以降白黒)
- 図はありません.
- 文体は固いです.
- 書いてあることを鵜呑みにせず,ツッコミを入れながら読んで下さい.
レベル
- (読むために必要となる前提知識を記述します)
関連する景勝地や講堂
- (もしあれば記述し、該当観光地ページへリンクします)